

Laboratory Ceramics Porcelain & Alsint 99.7

Content

What is Laboratory Porcelain?	3
Why should I use Haldenwanger Laboratory Porcelain?	4
Haldenwanger quality – the proven best!	6
Laboratory Porcelain	
Mortars 55	8
Pestles 56	8
Evaporating basins 109	8
Evaporating basins 130, 131, 888	9
Incinerating dishes 33, 33 C, 33 D	10
Flour incinerating dishes 5032	10
Melting crucibles 79, 79 C, 79 MF	11
Filtering crucibles 84	11
Gooch crucibles 82 A, 82 R	12
Crucible lids 79 D	12
Filtering discs 31 B	13
Funnels 126, 127 C	13
Spot plates 61 A, 61 B	14
Desiccator plates 119 C	14
Casseroles 17	15
Combustion boats 30	15
Graduated beakers 51	15
Ball mills GSK	16
Balls 42 K	16
Spoon spatulas 74	17
Clay plates	17
Hard porcelain tubes	17
Combustion boats	17

Alsint 99.7 Oxide Ceramics

Alsint 99.7 combustion boats	18
Alsint 99.7 porous incinerating dishes	18
Alsint 99.7 incinerating dishes	18
Alsint 99.7 tubular crucibles	18
Alsint 99.7 crucibles	19

What is Laboratory Porcelain?

Laboratory Porcelain results from thousands of years of systematic development of porcelain itself – an impervious silicate material that is made by firing a mixture of natural minerals such as china clay, quartz and feldspar.

Haldenwanger has been manufacturing Laboratory Porcelain for more than 150 years and development is still ongoing. New market demands in terms of form and quality mean continual custom. Many standard products must comply with a range of different national norms. Laboratory Porcelain is mainly used in industrial laboratories and research institutes worldwide as an aid in chemical analyses and preparation work.

The properties of Haldenwanger Laboratory Porcelain correspond to the DIN EN 60672 standard, group 100, type 110. Temperature stability and resistance to physical and chemical attack are important characteristics. Consistant quality is ensured through strict control of raw materials and production. Laboratory Porcelain is a potassium aluminium silicate. Under the microscope, a transparent cut shows that Haldenwanger Laboratory Porcelain is a material in which scorched and prismatic mullite crystals ($3Al_2O_3 \cdot 2SiO_2$) are embedded in a glass matrix. As a silicate, Haldenwanger Laboratory Porcelain is very resistant to all types of acids, even at boiling temperatures, with the exception of hydrofluoric acid.

Although less resistant to warm and highly concentrated alkalis than to acids, it still performs better than glass. Molten alkali salts attack laboratory porcelain. Its resistance to high temperatures comes from the mullite structure of the material. Although its glass phase softens at very high temperatures, the mullite structure has a stabilising effect and prevents deformations. Therefore, unglazed Laboratory Porcelain can be used at temperatures of up to 1350 °C according to the application. Glazed Laboratory Porcelain can be used at temperatures of up to 1000 °C. After that, the glaze begins to soften.

Why should I use Haldenwanger Laboratory Porcelain?

Quality and resistance for more than 150 years

Despite our long history, we have taken care to maintain the original size and shape of our products. New challenges in an ever-growing market have led us to new developments. Ensuring the best refractoriness and resistance to physical and chemical attack has always been of the utmost importance to us.

We guarantee consistently high standards by performing quality checks at all levels, e.g. on raw materials, in the forming process and during final product inspection. To this end, we have established our own state-of-the-art testing and development centre as well as a pilot plant. Our products are continuously tested to comply with DIN 12851 regulations.

I. Imperviousness of the ceramic body

- No single area of any sample may show:
- any kind of discoloration in glaze-free areas
- · penetration of dye between the ceramic body and glazing

2. Dense glazing (no pores, no cracks)

No single sample may show trajectories of excess glazing slurry or any discoloration along the edges.

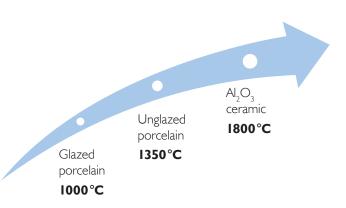
3. Thermal shock resistance

No single sample may fail by fracture and no crazing may appear after quenching.

4. Refractoriness of the glazing up to 900 °C Glazed pieces may not stick together at 900 °C.

5. No weight change during annealing

No single sample may show a weight change exceeding 0.1 mg per 10 g material.


Chemical resistance to hydrochloric acid, soda and caustic soda

No single sample may show a weight loss of more than:

- I mg per I dm² of the wetted inner surface area (hydrochloric acid)
- 10 mg per dm² of the wetted inner surface area (diluted soda)
- 60 mg per dm² of the wetted inner surface area (caustic soda)

Technical support

As a producer of high-performance ceramics, Haldenwanger offers not only the best materials but also technical support with materials selection and application. Our laboratory ceramics portfolio includes products that deliver temperature stability up to 2000 °C (as for instance ZrO_2 – materials on request).

Material	Application temperature	WAK* 10 ⁻⁶ K ⁻¹
Glazed porcelain	1000°C	5.3
Unglazed porcelain	l350 °C	5.3
Al ₂ O ₃	1800°C	8–9

Please note that all values quoted (page 4–5) are based on test specimens and may vary according to component design. These values cannot be guaranteed and can only be transferred to other forms and dimensions to a limited extent. They should be used for guidance only. In the field, for example, Alsint 99.7 moulded pieces demonstrate mechanical strength values between 160 and 300 MPa, depending on wall thickness, actual shape, surface finish, the shaping process and post-processing.

Being a member of the VGKL (Verband des Groß- und Außenhandels für Krankenpflege- und Laborbedarf), a trade association for leading wholesalers of laboratory equipment, we have always been at the cutting edge of technology. In addition, Haldenwanger offers training courses in the theory and usage of Laboratory Porcelain.

Aggressive reagents

Laboratory PorcelainChemical resistanceAll acids (20 °C):excellent*All acids (boiling):excellent*Warm, highly-concentrated alkaline solutions:goodMolten alkaline salts:unsuitable*Except hydrofluoric acidunsuitable

Alsint 99.7 Oxide Ceramics

*Exception: highly concentrated hydrofluoric acid, be	oiling phosphoric
Molten alkaline salts:	unsuitable
Warm, highly-concentrated alkaline solutions:	good
All acids (boiling):	excellent*
All acids (20°C):	excellent*

acid, boiling potassium hydroxide and sodium hydroxide solutions

High temperatures	Heat resistant		
Glazed Laboratory Porcelain:	up to max. 1000 °C		
Unglazed Laboratory Porcelain:	up to max. I350 °C		
Alsint 99.7 Oxide Ceramics:	up to max. 1800 °C		

High-wear conditions

- For example:
- mortar and pestle
- ball mill
- mouthpieces
- shaft-protection sleeves, etc.

New developments

We are constantly optimising our Laboratory Porcelain to meet your needs.

Highest standards

- Our Laboratory Porcelain complies with DIN EN 60672-3, Group C 100, Type C 110.
- Laboratory articles made of Alsint 99.7 Oxide Ceramics comply with DIN EN 60672, Group C 700, Type C 799.

Stringent product controls, from the raw materials to the finished product, ensure the consistently high quality of our products.

Laboratory Porcelain	Unit	Hard porcelain	Pythagoras
Type according to DIN EN 60672-3	-	C 110	C 610
Range of application	-	Laboratory Porcelain	Chemical-technical products
Water absorption capacity	%	≤ 0.2	≤ 0.2
Bulk density	g cm -3	2.4	2.6
Flexural strength 20°C (3-point)	MPa	70–90	120
Thermal expansion 20–1000°C	10 ⁻⁶ K ⁻¹	5.3	6
Thermal conductivity 200°C	Wm ⁻¹ K ⁻¹	1.4	2
Maximum temperature exposure	°C	1350 unglazed/1000 glazed	1400 unglazed

Oxide Ceramics	Unit	Alsint 99.7*	Alsint porous
Al ₂ O ₃ content	%	99.7	99.5
Alkali content	%	0.05	0.05
CaO stabiliser content	%	-	-
Type according to DIN VDE 0335	-	C 799	-
Water absorption capacity	%	≤ 0.2	2–3.5
Bulk density	g cm ⁻³	3.75–3.94	3.5–3.6
Flexural strength 20°C (3-point)	MPa	300	70–110
Young's modulus	GPa	300–380	-
Hardness (Mohs' scale)	-	9	-
Thermal expansion 20–1000°C	10 ⁻⁶ K ⁻¹	8–9	8–9
Thermal conductivity 20–100 °C	Wm ⁻¹ K ⁻¹	25	-
Thermal shock resistance	-	good	good
Average pore diameter	μm	-	I_3
Specific thermal capacity 20–100°C	J kg ⁻¹ K ⁻¹	900	-
Maximum temperature exposure**	°C	1800	1700

*We recommend that products be heated at a rate not exceeding 30-50 °C per hour, **dependent on load

Haldenwanger quality – the proven best!

Haldenwanger crucibles shown before (left) and after (right) anneal testing. The result confirms the thermal stability of the glazing, even after multiple testing cycles.

Competitor crucibles shown before (left) and after (right) anneal testing. Significant discoloration can be detected after the first anneal cycle.

Why is thermal shock resistance of the utmost importance for Laboratory Porcelain?

Thermal shock resistance as described in DIN 51068 is a material's response to repeated subjection to thermal stresses occurring in (rapidly) changing temperature fields. Heating of and cooling of laboratory ceramics may lead to thermal stresses within the ceramic body. Compressive and tensile stresses may form due to the temperature gradients within the material.

In extreme situations, local stresses may exceed the strength level of the material, resulting in cracking. Thus, excellent thermal shock properties are most important for the longevity of Laboratory Porcelain.

Pointers on the correct use of laboratory porcelain:

The expected lifetime of Laboratory Porcelain is a function of various factors such as heating and cooling rates, the degree of filling (half/completely filled), the homogeneity of the filling within the crucible, the geometry of the crucible (round/angular, wall thickness, radii, transitions), usage (e.g. during cleaning), etc.

In order to avoid damaging the material, please heed the following guidelines:

Maximum temperature:

- glazed porcelain 1000 °C
- unglazed porcelain 1350 °C
- Al₂O₃ crucibles 1800 °C

Maximum heating rate of porcelain crucibles:

- porcelain crucibles I50 °C/h
- Al₂O₃ crucibles 50 °C/h

At higher application temperatures (> 400 $^{\circ}$ C), curved crucibles 33 and 33 D should preferably be used over the angular crucible 33 C.

Minimum degree of filling:

- choose the right size according to the content, minimum degree of filling 75% (to avoid temperature differences)
- homogeneous filling within the crucible

Operation during cool-down phase:

- only use pre-heated crucible tongues
- place hot crucibles on porous ceramic materials only, such as R-SiC or alumo-silicate materials

Custom ceramics

The following pages will provide an overview of our current Laboratory Porcelain product range. In addition, we offer bespoke products in variable material and shape/size combinations. Also, we can apply your logo, serial numbers and barcodes on the glazing.

Haldenwanger is your number one specialist in high-temperature and laboratory ceramics. Thanks to our more than 150 years of experience, we can offer the ideal solution.

We would be pleased to advise you – in many European languages!

Mortars

Article no. 55 With spout

 T_{max} depends on the application, but should not exceed 200 °C.

Size	DIN	Inner Ø mm	Height mm	Capacity ap- prox. ml	Sales unit unglazed	Sales unit glazed
00	12906	50	32	20	20	10
0 a		65	40	70	20	10
		70	45	75	20	10
2	12906	80	50	100	10	10
3		90	55	170	10	10
4	12906	115	63	300	10	5
5	12906	130	65	400	5	5
6 a	12906	150	70	700	5	5
8	12906	180	80	I ,000	2	I
11	12906	240	100	2,600		I
15	12906	330	140	6,000		

When ordering, please specify whether the grinding surface should be glazed or unglazed.

Pestles

Article no. 56

 $\rm T_{max}$ depends on the application, but should not exceed 200 °C.

Size	DIN	Length Ø mm	Head Ø mm	Sales unit unglazed	Sales unit glazed
000		100	22	20	10
00	12906	115	24	20	10
0 a		125	28	20	10
I	12906	135	30	20	10
2	12906	150	36	10	10
3	12906	175	42	10	10
4		180	45	10	5
5		185	48	5	5
6 a	12906	210	55	5	5
8		215	60	2	

When ordering, please specify whether the grinding surface should be glazed or unglazed.

Evaporating basins

Article no. 109

Form B, semi-deep, with spout, Size 5/0-5 glazed inside and outside

Size 6–10 glazed except outside base

 $T_{\rm max}$ depends on the application, but should not exceed 400 $^\circ \rm C$

				Capacity	
Size	DIN	Ømm	Height mm	approx. ml	Sales unit
5/0	12903	40	16	10	100
4/0	12903	50	20	20	100
000	12903	63	25	40	100
00		70	26	50	100
0	12903	80	34	75	100
I		85	35	95	100
2	12903	100	40	115	50
4		110	45	220	50
5	12903	115	47	310	10
6		150	45	370	10
6 a	12903	160	64	640	5
7 b	12903	200	80	I ,000	5
9	12903	250	86	2,200	2
10	12903	310	0	3,400	2

Evaporating basins

Article no. 130

French shape, with spout and round base, glazed inside and outside T_{max} depends on the application, but should not exceed 400 °C.

			Capacity	
Size	Ømm	Height mm	approx. ml	Sales unit
3 5 6 7	75 97 110 125	40 50 52 60	70 190 270 350	10 10 10 10

Evaporating basins

Article no. 131

French shape, with spout and flat base, glazed inside and outside T_{max} depends on the application, but should not exceed 400 °C.

Size	Ømm	Height mm	Capacity approx. ml	Sales unit
2	58	24	30	20
3	75	30	60	20
4	84	36	100	10
5	97	40	150	10
6	110	50	250	10
7	125	52	290	10
8	150	60	400	5

Evaporating basins

Article no. 888 Form A, shallow, with spout, glazed except outside base $T_{_{max}}$ depends on the application, but should not exceed 400 °C.

C. Size	DIN	Ømm	Height mm	Capacity approx. ml	Sales unit
000 00 2 4 6 6 2 9	12903 12903 12903 12903 12903 12903 12903 12903 12903 12903	40 50 63 80 100 125 160 190 240 300	9 11 13 20 22 27 35 55 65 65 60	5 10 20 40 80 270 450 1,100 1,750 2,500	30 30 20 20 20 10 3 3 2

Incinerating dishes

Article no. 33

Cylindrical, glazed except outside base

 $T_{\rm max}$ depends on the application, but should not exceed 1000 °C.

Size	Ø mm	Height mm	Capacity approx. ml	Sales unit
	40	21	15	40
2	50	25	30	30
4	60	31	60	20
		-		-

Article no. 33 C

Conical, rectangular, glazed except outside base

 $T_{_{max}}$ depends on the application, but should not exceed 400 $^\circ C.$

Size	Length mm	Width mm	Height mm	Sales unit
00	48	26	10	30
00 b	55	42	16	20
4 b	70	46	13	20
7	96	55	16	10

Article no. 33 D

Shallow, glazed except outside base

 $T_{\rm max}$ depends on the application, but should not exceed 1000 °C.

Flour incinerating dishes

Article no. 5032

According to Prof. Mohs, glazed except outside base T_{max} depends on the application, but should not exceed 1000 °C.

Size	Ø mm	Height mm	approx. ml	Sales unit
2	37	10	8	40
3	42	11	10	40
4	48	12	15	30

Capacity

	Capacity					
Size	Ømm	Height mm	approx. ml	Sales unit		
l	56	23	30	100		

Melting crucibles

Article no. 79

Low shape, glazed, minimum filling level 75% $T_{\rm max}$ depends on the application, but should not exceed 1000 °C.

Size	DIN	Upper Ø mm	Height mm	Capacity ap- prox. ml	Lid	Sales unit
000 a 00 1 2* 2 a 3 4	2904 2904 2904 2904 2904 2904 2904	30 35 40 45 50 60 70 83	20 23 26 29 32 38 47 55	8 11 20 25 40 65 95 180	7 7 a 6 5 4 3 2 1	100 100 100 100 100 100 50 20

*Conradson crucible acc. to ASTM D 189-65

Article no. 79 C

Tall shape, glazed, minimum filling level 75% $T_{\rm max}$ depends on the application, but should not exceed 1000 °C.

C.	<u>.</u>				Capacity ap-		
	Size	DIN	Upper Ø mm	Height mm	prox. ml	Lid	Sales unit
	00		26	34		8	100
	0	12904	30	38	15	7	100
	I	12904	35	44	24	7/7a	100
	2	12904	40	51	40	6/7a	100
	3	12904	46	58	50	5	50
	4	12904	51	65	85	4	50
	5	12904	60	79	140	3	25

Article no. 79 MF

Medium-high shape, glazed, minimum filling level 75% $T_{_{max}}$ depends on the application, but should not exceed 1000 °C.

Filtering crucibles

Article no. 84

With porous base

 $\rm T_{max}$ depends on the application, but should not exceed 400 °C.

Size	DIN	Upper Ø mm	Height mm	prox. ml	Lid	Sales unit
9		25	20	5	9	100
8		30	25	10	7	100
7	12904	35	28	13	7 a	100
7 a	12904	40	32	20	6	100
6	12904	45	36	38	5	100
6 a	12904	50	40	50	4	100
5		52	43	60	4	100
4	12904	60	50	90	3	100
3		63	55	110	3/2	50
2	12904	70	60	150	2	50
		82	65	230	Ι	20
Ιa		89	75	300	Ιa	10

Capacity ap-

С.						Capacity ap-	
	Size	DIN	Rim Ø mm	Base Ø mm	Height mm	prox. ml	Sales unit
-	P2/2	12909	35	24	40	25	I

Porosity: P2 \approx 7 μ m

Gooch crucibles

Article no. 82 A

Wide shape, with perforated base, glazed $T_{\rm max}$ depends on the application, but should not exceed 600 °C.

Size	Upper Ø mm	Base mm	Height mm	Capacity approx. ml	Sales unit
2	39	25	42	25	15
3	42	26	45	35	10

Lid 79 D, filtering discs 31 B have to be ordered separately. Filter holes approx. 0.5 mm in Ø

Gooch crucibles

Article no. 82 R

Tall shape, with perforated base, glazed

 $T_{_{max}}$ depends on the application, but should not exceed 600 °C.

Capacity					
Size	Upper Ø mm	Base mm	Height mm	approx. ml	Sales unit
3	35	24	41	25	20
5		21		20	20

Lid 79 D, filtering discs 31 B have to be ordered separately. Filter holes approx. 0.5 mm in Ø

Crucible lids

Article no. 79 D

 $\rm T_{\rm max}$ depends on the application, but should not exceed 600 °C.

Size	DIN	Inner Ø mm	Sales unit
9		28	50
8		33	50
7	12904	37	50
7 a	12904	45	50
6	12904	49	50
5		54	50
4		64	25
3		70	25
2	12904	76	25
		89	20
la		94	10

Filtering discs Article no. 31 B According to Dr Witt T_{max} depends on the application, but should not exceed 600 °C.

Ømm	Sales unit
22	30
25	30

Funnels

Article no. 126

According to Dr Hirsch

 $\rm T_{max}$ depends on the application, but should not exceed 200 °C.

Size	DIN	Nominal size* Ø mm	Inner Ø mm	Height mm	Tube length mm	Outer Ø mm	Tube top Ø mm	Tube bottom Ø mm	Sales unit
5/0	12905	8	9	45	22	30	7	5.5	10
4/0		_		56	25	40	9	6	10
4/0 a		_	13	61	27	45	12	7	10
000	12905	16	15	74	33	52	11.5	8	10
00	12905	25	27	102	42	72	16	11	10

*The nominal size is equivalent to the diameter of suitable filter paper.

Funnels

Article no. 127 C

According to Dr Büchner

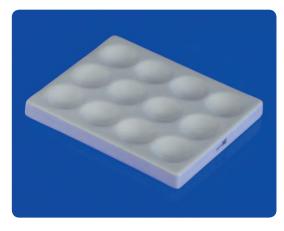
 $T_{_{max}}$ depends on the application, but should not exceed 200 °C.

Size	DIN	Nominal size* Ø mm	Inner Ø mm	Height mm	Tube length mm	Capacity approx. ml	Tube top Ø mm	Tube bottom Ø mm	Sales unit
000		18	19	47	20	3	9	8	10
00		27	29	60	30	10	10.5	8.5	10
0		40	42	76	37	25	12.5	10	10
0 a	12905	45	48	100	41	50	16	4	10
I	12905	55	59	129	53	75	19	16.5	10
2	12905	70	74	150	75	135	21	15.5	10
2 a	12905	90	95	165	75	290	24	20	10
3	12905	110	4	201	90	580	31	23	3
4	12905	125	130	232	106	795	31.2	25.5	2
4 a	12905	150	155	235	110	1,250	35	25	2
5	12905	185	190	260	120	1,900	35	25	I
6	12905	240	250	330	138	4,300	40	26	I
6 a	12905	270	279	300	125	5,800	48	29.6	I
8	12905	320	330	350	150	10,600	55	36	I

Spot plates

Article no. 61 A

Rectangular, with 6 wells, glazed $T_{_{max}}$ depends on the application, but should not exceed 400 $^\circ C.$


					Cavities		
Size	Length mm	Width mm	Height mm	Number	Ømm	Depth mm	Sales unit
3	115	80	12	6	36		10

Spot plates

Article no. 61 B

Rectangular, with 12 wells, glazed

 $T_{_{max}}$ depends on the application, but should not exceed 400 °C.

					Cavities		
Size	Length mm	Width mm	Height mm	Number	Ømm	Depth mm	Sales unit
2 3	9 27	85 97	6 12	2 2	20 25	3 6	10 10

Desiccator plates

Article no. 119 C With central hole 20 mm in Ø and filter holes approx. 5 mm in Ø $\rm T_{max}$ depends on the application, but should not exceed 600 °C.

Size	DIN	Height mm	Ømm	Sales unit
90	12911	7.9	90	10
140	12911	8.9	140	10
190	12911	9.4	190	10
235	12911	10.6	235	10
280	12911	10.6	280	

۰. \sim

Casseroles

Article no. 17

With porcelain handle, glazed except rim $T_{_{\rm max}}$ depends on the application, but should not exceed 400 °C.

Size	DIN	Ømm	Height mm	Capacity approx. ml	Sales unit
4/0	12907	63	36	80	10
000	12907	80	46	140	10
0	12907	102	58	290	10
2	12907	127	70	500	4
4	12907	160	97	I,300	
4 b	12907	215	110	2,600	

Combustion boats

Article no. 30

Glazed

 $\rm T_{\rm max}$ depends on the application, but should not exceed 1000 °C.

Size	Length mm	Width mm	Height mm	Sales unit
6	85	3	8	20
7	102	13	10	20
9	130	18	14	10
			-	

Graduated beakers

Article no. 51 Graduated inside, glazed except outside base

 $T_{\rm max}$ depends on the application, but should not exceed 400 °C.

			Capacity	
Size	Base Ø mm	Height mm	approx. ml	Sales unit
3 a	80	100	250	3
5 a	95	125	500	2
8	110	165	I ,000	2
10	40	193	2,000	
14	190	280	5,000	

Ball mills

Article no. GSK

With lid, metal lock and sealing ring, glazed inside and outside T_{max} depends on the application, but should not exceed 200 °C.

GSK mill no.	Base Ø mm	Height mm	Capacity approx. ml	Sales unit
0	135	182	٥٥٥, ا	I
0 a	150	222	I,700	I
0 b	200	240	3,000	I
I	225	280	5,000	I
Ιx	288	333	10,000	
l a	335	360	15,000	

Unglazed inside available upon request.

Unglazed balls

Article no. 42 K Sales unit each: 5 kg

Volume recommendations for ball fillings

Mill	Capacity		Ball Ø mm				
GSK no.	approx. I	9	15	20	30	40	50
0	I	0.10 kg	0.2 kg	0.2 kg	_	_	
0 a	1.5	0.15 kg	0.2 kg	0.2 kg	_	_	
0 Ь	3	0.30 kg	0.6 kg	0.6 kg	-	_	
I.	5	0.50 kg	I.0 kg	I.0 kg	-	-	
lх	10	0.50 kg	1.5 kg	1.5 kg	1.5 kg	-	
la	15	1.00 kg	1.5 kg	1.5 kg	1.5 kg	2 kg	
Number of ba	lls per kg approx.	I,080	230	95	30	12	6
Ball density pe	er litre approx.	1.35	1.4	1.4	1.3	1.3	1.23

Sealing rings, inner rubber rings and metal locks as spare parts can also be purchased for each type of ball mill.

Spoon spatulas

Article no. 74

 $T_{_{max}}$ depends on the application, but should not exceed 400 $^\circ C.$

Size	Length mm	Sales unit
2	2	20
4	170	20
6	210	10
8	305	5

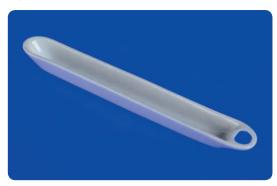
Clay plates Porous

 $T_{_{max}}$ depends on the application, but should not exceed 600 °C.

Ømm	Sales unit
180	20
220	20

Hard porcelain tubes Unglazed

 $T_{_{max}}$ depends on the application, but should not exceed 1400 $^\circ C$


C and S determination

Outer Ø mm	Outer Ø mm Inner Ø mm		Sales unit
22	17	500	50
22	17	600	50
26	20	500	50
26	20	600	50

Combustion boats

Unglazed

 $T_{_{max}}^{^{-}}$ depends on the application, but should not exceed 1000 °C.

Length mm	Width mm	Height mm	Sales unit	
84	14	9	500	

с I

1

14/2 1/1

.

...

Alsint 99.7 Oxide Ceramics

Alsint 99.7 combustion boats

Length mm	Width mm	Height mm
19	5	4
45	11	7
52	7,5	6
75		7
87	17	9
115	16	9
120	30	15
160	40	21
200	15	15

Alsint porous incinerating dishes

Length mm	Width mm	Height mm
420	200	50
350	240	40
350	230	58
280	210	100
220	170	100
210	170	300
100	100	110

Alsint 99.7 incinerating dishes

Length mm	Width mm	Height mm
40	10,5	8,5
50	20	20
50	25	20
50	38	36
75	50	25
100	32	28
100	45	19
105	15	15
150	65	19
150	65	35
160	80	30
160	135	90
190	138	75
250	65	30

Alsint 99.7 tubular crucibles

Outer Ø mm	Inner Ø mm	Height mm
14	10	100
16	12	100
20	15	100
22	17	100
24	19	100
30	25	100
34	28	100
38	32	100
44	38	100
48	40	100
55	45	100
60	50	100
38	32	200
44	38	200

Custom design

We can custom make Alsint 99.7 components to your requirements. Simply send us your detailed specifications and we will provide you with an obligation-free quote. Alsint 99.7 is the material of choice for use under high-wear conditions, in chemical-technical and electrical engineering applications and in high-temperature technology.

Important information concerning the use of Alsint 99.7 laboratory equipment:

Due to their high refractoriness (melting point above 2000 °C) and chemical resistance to a wide range of substances, crucibles and other devices made of Alsint 99.7 are used in multiple applications. However, these outstanding properties are only fully maintained with proper handling.

Applications

Chemical-technical applications:

- crucibles for crystal growing
- crucibles for fusion processes
- crucibles for annealing

High-wear conditions:

- ball mill pots
- milling balls
- mouthpieces
- shaft-protection sleeves

Alsint 99.7 crucibles

Cylindrical, flat base, minimum filling level 75%

 Size	Outer Ø mm	Inner Ø mm	Height mm	Capacity approx. ml	Lid
ΙA	20	16	30	5	79 D/9
2 A	30	26	40	15	79 D/8
3 A	35	30	50	30	79 D/7
4 A	40	36	60	60	79 D/7a
5 A	50	44	75	110	79 D/5
6 A	65	55	100	270	79 D/3
7 A	85	75	150	700	79 D/I
8 A	125	110	220	2,200	—

Alsint 99.7 crucibles

Conical, tall shape, minimum filling level 75%

Size	Upper outer Ø mm	Lower outer Ø mm	Height mm	Capacity approx. ml	Lid
00 B	30	14	24	10	79 D/8
0 B	41	18	37	25	79 D/7a
ΙB	48	20	41	40	79 D/5
2 B	54	24	50	60	79 D/4
3 B	60	26	50	80	79 D/4
4 B	66	30	56	100	79 D/3

Alsint 99.7 crucibles

Conical, low wide shape, minimum filling level 75%

	Size	Upper outer Ø mm	Lower outer Ø mm	Height mm	Capacity approx. ml	Lid
	00 C	25	15	30	10	_
	0 C	30	18	38	15	79 D/8
	ΙC	33	18	40	20	79 D/7
	2 C	38	21	47	30	79 D/7a
	3 C	42	25	54	45	79 D/6
1	4 C	50	27	65	80	79 D/5
	5 C	62	32	75	150	79 D/3
	6 C	73	35	90	250	79 D/2
	7 C	85	35	100	350	79 D/I
	8 C	90	47	115	500	79 D/1a
	9 C	105	54	130	750	_
	10 C	120	62	150	1,200	_

Morgan Advanced Materials Haldenwanger GmbH has achieved international ISO 9001:2015, ISO 14001:2015 and BS OHSAS 18001:2007 certification.

